Grow with

[^0]You can do it. We can help.

Maths

Entry Level 3, Book 10

GLH 3

Measure

Name	
Number	
Location	
Date Issued	

Introduction

This booklet is part of your learning programme.
Remember to read carefully and try your best. Don't worry if you get stuck, make a note on the booklet and move on to the next task. Try coming back to it later, see if you can work it out then.

If you are still stuck, remember to make a note at the end of the booklet.

Throughout the booklet, you will see that some words have been printed blue and bold. You will find more detailed explanations of each of these words in the 'Glossary' at the back of the booklet.

Glossary is a list of often difficult or specialised words with their definitions, placed at the back of a book. You may also know this as a word bank.

By working through this booklet, you will become confident using different units of measure for weight, length and capacity. Being confident in using measurements is a useful skill in both our daily lives and employment.

What Do the Symbols in this Booklet Mean?

Where you see this symbol, there is a skills practice or activity for you to complete.

Information, explanations and case studies are shown with this icon.

This shows you there is a glossary or word bank with the meaning and correct spelling of key words.

This icon shows where to write comments for your tutor to read.

This symbol lets you know there are some key points to remember.

You are studying Entry Level 3 Maths, which is taught over 55 Guided Learning Hours (GLH).

The programme covers the units listed below. The unit that you're working on today is ticked.

Booklet	GLH		
7	Place Value and Sequencing		
2	Addition and Subtraction		
3	Multiplication		
4	Division		
5	Fractions		
6	Decimals and Money		
7	Rounding		
8	Time		
9	Shape and Space		
10	Measure		
11	Handling Data		
12	Recap \& Summary		

Outcomes

These are the outcomes you can achieve by completing the learning activities in this booklet.

Use and compare measurements of length, capacity, weight and temperature using metric or imperial units to the nearest labelled or unlabelled division.

Compare metric measurements of length including millimetres, centimetres, metres and kilometres.

Compare metric measurements of capacity including millilitres and litres.

Compare metric measurements of weight including grams and kilograms.

Recap

A recap is an effective way of helping you to remember and apply what you have learnt. If this is your first booklet, it may help you to think about what you know already about this subject. Can you answer the following questions?

What was the last booklet you completed?

Can you remember what you learnt about?

Can you remember three key points from the booklet?
1

Measuring

Why do we measure?

Measuring is important when doing tasks such as:
baking, building, carpentry, planning gardens, map-drawing, weighing yourself, etc.

We are going to look at 4 types of measurement.
They are weight, length, temperature and capacity.

- Weight: How heavy an object is
- Length: How long an object is
- Temperature: How hot or cold an object is
- Capacity: How much an object can hold

We will also look at two types of units of measurement. Here are some that you might come across and the abbreviations used for them.

Imperial	
Measurement	Abbreviation
Inches	in
Feet	ft
Yards	yd
Miles	mi
Pints	pt

Metric	
Measurement	Abbreviation
Millimetres	mm
Centimetres	cm
Metres	m
Kilometres	km
Millilitres	ml
Grams	g
Litres	l

- Imperial measurements date back many centuries. Some of these measurements are still used in the UK today.
- Metric measurements are a more modern method of measuring weight, length, temperature and capacity.
- It is important to add the unit of measurement to the end of any number so that we know what we're working in. This is because there is a difference in the units of measurement. For example, if you needed a kitchen unit that was 2 foot wide this would not be the same as 2 metres wide. If you ordered a 2 metre wide cupboard by mistake you would have a cupboard that was too big for the space. We will look at conversions some more later in this booklet.

Measuring

Using the words below, can you put the name of each measuring instrument under the correct picture?
One has been completed for you.
Weight

1.

Capacity

3.

Length

5.

Temperature

8. Mercury

Thermometer
2.

4.

6.

7.

9.
10.

Electronic thermometer

Sewing tape measure
Bucket

Bathroom scales
Retractable tape measure
Kitchen scales
Measuring wheel

Decimalisation

In 1971, the UK changed its money system. The UK had to change because we used the imperial system and Europe used the metric system. By using the same system this meant that the UK was able to trade and do business better with businesses in Europe.

The change didn't just affect our money system. It also meant that the units we use for things such as length, capacity, weight and temperature changed too.

So, now, in the UK, we often use some metric measurements and some imperial measurements.

Examples:

- Our road signs have never changed and all distances to towns and cities are in miles (imperial). All speed signs are in miles per hour (imperial). In many other countries, distances are measured in kilometres (metric) with speed signs in kilometres per hour (metric).
- Some people give their height in feet and inches (imperial) but others give it in metres and centimetres (metric).
- Carpets are usually measured in metres or square metres (metric).
- Temperature is often talked about in Celsius (metric).

When we use metric measures, we are counting in tens, hundreds and thousands so we need to recap how to multiply and divide by tens and hundreds so that you can compare between these measures.

Decimalisation

When you times numbers by 10, it is like moving the decimal point one place to the right.

Example:

- 2×10 moves the decimal point that would be after the 2 by one place, so the answer is 20.

When you times numbers by 100, it is like moving the decimal point two places to the right.

Example:

- 2×100 moves the decimal point that would be after the 2 by two places, so the answer is 200.

When you times numbers by 1000 it is like moving the decimal point three places to the right.

Example:

- 2×1000 moves the decimal point that would be after the 2 by three places, so the answer is 2000.

This table helps to show how the decimal place moves:

The number in the examples above is $\mathbf{2}$ (or we can say $\mathbf{2 . 0}$ which will help to show where the decimal point is)	2	-	0			
x by 10 Decimal point is moved one place to the right to make 20	2	0	.	0		
$\text { x by } 100$ Decimal point is moved two places to the right to make 200	2	0	0	-	0	
$\begin{aligned} & \text { x by } 1000 \\ & \text { Decimal point is moved three places } \\ & \text { to the right to make } 2000 \end{aligned}$	2	0	0	0	-	0

Decimalisation

Here are some examples:
Times numbers by 10
$52 \times 10=520$
$85 \times 10=850$
$6 \times 10=60$

Times numbers by 100
$9 \times 100=900$
$10 \times 100=1000$
$70 \times 100=7000$

Times numbers by 1000
$9 \times 1000=9000$
$10 \times 1000=10000$
$5 \times 1000=5000$

(
Task 2

Now you have a try at completing these:

1. $50 \times 10=$
2. $600 \times 10=$
3. $70 \times 1000=$
4. $5 \times 1000=$

Decimalisation

When you divide (or share) numbers by 10, move the decimal point 1 place to the left.
$200 \div 10=20$
$520 \div 10=52$
$850 \div 10=85$

When you divide numbers by 100, move the decimal point 2 places to the left.
$300 \div 100=3$
$900 \div 100=9$
$5500 \div 100=55$

When you divide numbers by 1000, move the decimal point 3 places to the left.
$3000 \div 1000=3 \quad 5000 \div 1000=5 \quad 8000 \div 1000=8$

Now you have a try at completing these:

1. $100 \div 10=$
2. $50 \div 10=$
3. $700 \div 100=$
4. $1000 \div 10=$

Recap

So far in this booklet we have identified:

The difference between metric and imperial measurements.	
We have also re-capped on how to multiply and divide by	
10,100 and 1000.	

We will now move onto comparing different measurements.

Converting Length

Here are some different measures of length and how they compare to each other.

Millimetres (mm)	$10 \mathrm{~mm}=1 \mathrm{~cm}$	$1000 \mathrm{~mm}=1 \mathrm{~m}$
Centimetres (cm)	$100 \mathrm{~cm}=1 \mathrm{~m}$	
Metres (\mathbf{m})	$1000 \mathrm{~m}=1 \mathrm{~km}$	

We use different measurements for different purposes.

- Millimetres are used to work out accurate lengths and sizes in small detailed work, such as creating design drawings and maps.
- Centimetres are used to work out slightly larger lengths. They are good to use in projects such as carpentry and decorating.
- Metres are useful measurements for bigger projects, such as garden projects and building work.
- Kilometres are used to show longer distances, such as how far away another town or city is.

To change (convert) centimetres into millimetres, we have to remember that for every $\mathbf{1 c m}$, there are $\mathbf{1 0 m m}$. This means that you have to multiply the measurements in centimetres by 10 to convert them to millimetres. Remember to use the symbols mm and $\mathbf{c m}$. Here are a few examples:

- $2 \mathrm{~cm}(x 10)=20 \mathrm{~mm}$
- $3.5 \mathrm{~cm}(x 10)=35 \mathrm{~mm}$
- $60 \mathrm{~cm}(x 10)=600 \mathrm{~mm}$

Try completing these. The first one has been done for you.

	Centimetres (cm)	Millimetres (mm)
1.	7 cm	70mm
2.	2.5 cm	
3.	80 cm	
4.	25 cm	
$\mathbf{5 .}$	67 cm	
$\mathbf{6 .}$	2.2 cm	

Converting Length

To change metres into centimetres, you have to remember that for every $\mathbf{1 m}$, there are $\mathbf{1 0 0} \mathbf{c m}$. This means that you have to multiply the measurements in metres by 100 to convert them to centimetres. Here are a couple of examples:

- $3 \mathrm{~m}(x 100)=300 \mathrm{~cm}$
- $9.5 \mathrm{~m}(\times 100)=950 \mathrm{~cm}$
- $10 \mathrm{~m}(x 100)=1000 \mathrm{~cm}$

Remember to use the symbols $\mathbf{c m}$ and \mathbf{m}.

Try completing these (remember 0.5 is a half, or $\frac{1}{2}$).
The first one has been done for you.

	Metres (m)	Centimetres (cm)
1.	5 m	500 cm
2.	2.6 m	
3.	4 m	
4.	5.1 m	
5.	0.5 m	
6.	1.5 m	

7. Which of these measurements is the longest?
8. Which of these measurements is the shortest?

Converting Length

To change (convert) millimetres into centimetres, you have to remember that for every $\mathbf{1 c m}$, there are $\mathbf{1 0} \mathbf{m m}$ so you need to divide by 10 to convert them to cm . Here are a couple of examples:

- $210 \mathrm{~mm}(\div 10)=21 \mathrm{~cm}$
- $35 \mathrm{~mm}(\div 10)=3.5 \mathrm{~cm}$
- $600 \mathrm{~mm}(\div 10)=60 \mathrm{~cm}$

Remember to use the symbols $\mathbf{m m}$ and $\mathbf{c m}$.

Try completing these. The first one has been done for you.

	Millimetres (mm)	Centimetres (cm)
1.	50 mm	5 cm
2.	250 mm	
3.	800 mm	
4.	1000 mm	
5.	610 mm	
6.	55 mm	

7. Which of these measurements is the longest?
8. Which of these measurements is the shortest?

Converting Length

To change (convert) centimetres into metres, you have to remember that for every $\mathbf{1 m}$, there are $\mathbf{1 0 0} \mathbf{c m}$ so you need to divide by 100 to convert to metres. Here are a couple of examples:

- $400 \mathrm{~cm}(\div 100)=4 \mathrm{~m}$
- $1000 \mathrm{~cm}(\div 100)=10 \mathrm{~m}$
- $600 \mathrm{~cm}(\div 100)=6 \mathrm{~m}$

Remember to use the symbols $\mathbf{c m}$ and \mathbf{m}.

Try completing these. The first one has been done for you.

	Centimetres (cm)	Metres (m)
1.	400 cm	4m
2.	750 cm	
3.	300 cm	
4.	1000 cm	
5.	615 cm	
6.	505 cm	

7. Which of these measurements is the longest?
8. Which of these measurements is the shortest?

Notes

Let's keep going

Feedback

WWW (What Went Well)

EBI (Even Better If)

Next steps

Learner feedback (Please provide some feedback for your tutor following the comments that you have just made on your work.)

Stretch and Challenge Activity

(1)

Task 8

Keenan wants to replace the fridge in his kitchen. There is a narrow gap that the fridge has to fit into. He has looked at the width of five different fridges:

Type A	Width 580 mm , height 2000 mm
Type B	Width 610 mm , height 1800 mm
Type C	Width 625 mm, height 1850 mm
Type D	Width 720 mm, height 1600 mm
Type E	Width 530 mm, height 2200 mm

He has measured the width of the gap and it is 62 cm . The maximum height is 2 m .

Which fridges could Keenan fit into the gap?

Remember:

- $10 \mathrm{~mm}=1 \mathrm{~cm}$
- $100 \mathrm{~mm}=10 \mathrm{~cm}$
- $1000 \mathrm{~mm}=100 \mathrm{~cm}$, which is the same as:
- $1000 \mathrm{~mm}=1$ metre

Answer:

The Metric Measurements of Weight

Here are some different measures of weight and how they compare to each other.

Grams (g)	$1000 \mathrm{~g}=7 \mathrm{~kg}$
Kilograms (kg)	$7 \mathrm{~kg}=1000 \mathrm{~g}$

- Grams are often used for smaller measurements, such as how much a bar of chocolate or a bag of crisps weighs.
- Kilograms are used for larger measurements, such as how heavy a bag of flour or a chair weighs.

To change kilograms into grams, you have to remember that for every $\mathbf{1 k g}$, there are $\mathbf{1 0 0 0} \mathbf{g}$, so you need to multiply the kilograms by 1000 to convert them to grams. Here are a few examples:

- $2 \mathrm{~kg}(x 1000)=\mathbf{2 0 0 0 g}$
- $3.5 \mathrm{~kg}(x 1000)=3500 \mathrm{~g}$
- $0.5 \mathrm{~kg}(x 1000)=\mathbf{5 0 0 g}$

Remember to use the symbols \mathbf{g} and $\mathbf{k g}$.

Try completing these. The first one has been done for you.

	Kilograms (kg)	Grams (g)
1.	4 kg	4000 g
2.	7 kg	
3.	3 kg	
4.	7 kg	
5.	6.5 g	
6.	0.5 g	

7. Which of these measurements is the heaviest?
8. Which of these measurements is the lightest?

The Metric Measurements of Weight

To change grams into kilograms, you have to remember that for every $\mathbf{1 k g}$, there are $\mathbf{1 0 0 0} \mathbf{g}$ so you need to divide by 1000 to convert grams to kilograms. Here are a few examples:

- $2000 \mathrm{~g}(\div 1000)=\mathbf{2 k g}$
- $5000 \mathrm{~g}(\div 1000)=\mathbf{5 k g}$
- $400(\div 1000)=0.4 \mathrm{~kg}$

Remember to use the symbols \mathbf{g} and $\mathbf{k g}$.

Try completing these. The first one has been done for you.

	Grams (g)	Kilograms (kg)
1.	4000 g	4kg
2.	7000 g	
3.	3000 g	
4.	500 g	
5.	750 g	
6.	5000 g	

7. Which of these measurements is the heaviest?
8. Which of these measurements is the lightest?

Skills Practice

Can you match the weight to the item?
The first one has been completed for you.
Task

1kg

100g

1kg
$45 g$

77 kg

The Metric Measurements of Capacity

These are the measures of capacity and how they compare to each other.

Millilitres (ml)	$1000 \mathrm{ml}=11$
Litre (I)	$11=1000 \mathrm{ml}$

- Millilitres can be used to work out small measurements, such as the correct amount of medicine.
- Litres can be used for larger measurements, such as bottles of cola, lemonade and water.

To change litres into millilitres, you have to remember that for every 1l, there are 1000 ml . This means we multiply by 1000 to convert litres to millilitres. Here are a few examples:

- $31(x 1000)=3000 \mathrm{ml}$
- $11(x 1000)=1000 \mathrm{ml}$
- $1.21(x 1000)=200 \mathrm{ml}$

Remember to use the symbols $\mathbf{m l}$ and \mathbf{I}.

Have a try at completing these. The first one has been done for you.

	Litres (I)	Millilitres (ml)
1.	11	1000mI
2.	51	
3.	2.51	
4.	1.51	
5.	0.61	
6.	0.51	

7. Which of these has the greatest capacity?
8. Which of these has the smallest capacity?

The Metric Measurements of Capacity

To change millilitres into litres, you have to remember that for every $\mathbf{1 l}$, there are $\mathbf{1 0 0 0} \mathbf{m l}$ so you need to divide by 1000 to convert millilitres to litres. Here are a few examples:

- $6000 \mathrm{ml}(\div 1000)=61$
- 7000ml $(\div 1000)=7 \mathbf{1}$
- $900 \mathrm{ml}(\div 1000)=0.91$

Remember to use the symbols I and $\mathbf{m l}$.

Have a try at completing these. The first one has been done for you.

	Millilitres (ml)	Litres (I)
1.	8000 ml	$\mathbf{8 1}$
2.	3000 ml	
3.	4000 ml	
4.	600 ml	
5.	700 ml	
6.	9000 ml	

7. Which of these has the greatest capacity?
8. Which of these has the smallest capacity?

Stretch and Challenge

Depending on the amount, different types of measurements are better than others.

Should you use ml or I to measure the following? For each question, explain why you have picked that measurement.

1. Bottle of milk:
2. Bucket of water:
3. Spoonful of medicine:
4. Can of cola:
5. Bathtub of water:

Temperature

Why is it important to measure temperatures? Some of the reasons are shown below:

To cook food correctly and safely

To monitor illness

To store food safely

Global warming or climate change

Temperature

Temperature is measured in Fahrenheit (imperial) and Celsius (or centigrade) (metric). It is measured in degrees.

Celsius

The boiling point of water is $100^{\circ} \mathrm{C}$ (degrees Celsius or centigrade) and the freezing point of water is $0^{\circ} \mathrm{C}$. Body temperature is around $37.5^{\circ} \mathrm{C}$. Nice and easy to remember.

Fahrenheit

The boiling point of water is $212^{\circ} \mathrm{F}$ (degrees Fahrenheit) and the freezing point of water is $32^{\circ} \mathrm{F}$. Body temperature is around $98^{\circ} \mathrm{F}$. Not as easy to remember.

When cooking, you can use Celsius, Fahrenheit or gas mark to measure the temperature.

Here is a conversion table, which is useful when following recipes.

Celsius/centigrade	Fahrenheit	Gas mark
140	275	1
150	300	2
160	325	3
180	350	4
190	375	5
200	400	6
220	425	7
230	450	8

Skills Practice

Using the table on page 32, answer these questions:

1. Malik is following a recipe and has to cook his pie in the oven at gas mark 5. Unfortunately, his oven is only able to measure in degrees Fahrenheit. What should he set his oven at?
2. Karina has to bake a cake for 30 minutes at $180^{\circ} \mathrm{C}$. What gas mark should she use?

Convert the following to kilograms (kg):

1. 5000 g

Task
16
2. 1000 g
3. 500 g

Convert the following to grams (g):
4. 5 kg
5. 10 kg
6. 0.2 kg

Skills Practice

A recipe states you need:

- 0.5 kg of flour
- 400 g of butter

Task 17

- 3 g of salt

Which of the ingredients is the heaviest?

You buy three different sized packets of sweets, one 35 g , one 0.5 kg and the third 2.5 kg .

1. Which pack of sweets is the lightest?
2. You eat 0.5 kg of the sweets. How many kg of sweets do you have left?

Task
19

Circle the largest amount:
1.

1 m
2.

10m
1km
1cm
3.

100 m
1km
500 cm
4.

1 1m
200cm
300 mm

Abbreviation	A shortened form of a word e.g Dr for Doctor.
Accurate	Exact or reliable.
Capacity	The amount something can hold - for example a bottle.
Celsius	A measurement of temperature at which the boiling point of water is $100^{\circ} \mathrm{C}$ (degrees Celsius or centigrade) and the freezing point of water is $0^{\circ} \mathrm{C}$. Body temperature is around $37.5^{\circ} \mathrm{C}$.
Conversion	Process of one thing changing to another.
Fahrenheit	A measurement of temperature at which the boiling point of water is $212^{\circ} \mathrm{F}$ (degrees Fahrenheit) and the freezing point of water is $32^{\circ} \mathrm{F}$.
Imperial	A UK system of measure.
Metric	Measure based on tens, hundreds and thousands.

Next Steps

Now you have completed Booklet 10, please return this to your tutor/trainer.

Your tutor/trainer will mark the work and provide you with some feedback showing what you have done well and suggestions on improvements.

The next booklet will be provided to you.

Feedback

WWW (What Went Well)

EBI (Even Better If)

Next steps

Learner feedback (Please provide some feedback for your tutor following the comments that you have just made on your work.)

We would be interested in your opinion of this booklet.

1. Was there anything you found easy in this workbook? Yes No If you answered yes, what did you find easy?

2. Was there anything you found hard?

If you answered yes, what did you find hard?

3. Is there anything that you would like your tutor to go over again?
If you answered yes, what is this?
4. If your tutor provided learning aids, did you use them?
If you answered yes, how were they useful?

5. Would you like more support?

If you answered yes, one of our Support Staff will get in touch with you.

6. Do you have any questions?
7. What have you learnt from this booklet?

Notes

[^0]: FOUNDATIONS FOR CHANGE ®

